Efek protein rekombinan MPT64 Mycobacterium tuberculosis terhadap proliferasi sel T dan Sel B secara in vitro
Abstract
Mycobacterium protein tuberkulosis (MPT) 64 merupakan protein imunogenik yang disandi oleh gen Rv1980c dan berada pada lokasi Regions of Diffrences (RD) 2. Protein MPT64 di prediksi sebagai antigen dari M. tuberculosis yang pertama kali berinteraksi dengan sistem imun tubuh dari host. Penelitian ini bertujuan untuk mengetahui proliferasi sel T dan sel B yang di induksi dengan protein MPT64 secara invitro. Penelitian ini merupakan penelitian ekperimental yaitu melakukan uji proliferasi terhadap sel T dan sel B yang di induksi dengan protein MPT64 pada media RPMI. Purifikasi protein MPT 64 dilakukan dengan kolom Protino™ Ni-NTA System. Uji proliferasi sel T dan sel B dilakukan dengan Metode MTT, dimana hasil optical dencity nya (OD) di baca dengan ELISA reader pada panjang gelombang 595 nm. Data nilai Optical dencity hasil uji MTT di analisis dengan uji statistik One Way Anova. Hasil menunjukkan bahwa Rata-rata OD proliferasi sel T yang di induksi dengan protein MPT64 10 μg/ml, 5 μg/ml, 2,5 μg/ml dan 1,25 μg/ml masing-masing adalah 0.276, 0.202, 0.184 dan 0.178. Rata-rata OD proliferasi sel B yang di induksi dengan protein MPT64 10 μg/ml, 5 μg/ml, 2,5 μg/ml dan 1,25 μg/ml masing-masing adalah 0.434, 0.380, 0.285 dan 0.251. Hasil uji statistik menunjukkan perbedaan yang signifikan pada setiap perlakuan dengan nilai probabilitas (p=0,011) <0,05. Protein MPT64 konsentrasi 10 μg/ml menunjukkan hasil yang paling optimal dalam menginduksi proliferasi sel T dan sel B secara invitro.
Keywords
Full Text:
PDFReferences
Baratawidjaja, K.G. (2012). Imunologi Dasar. Eds.10. Fakultas Kedokteran UI. Jakarta.
Gong, W., Pan, C., Cheng, P., Wang, J., Zhao, G., and Wu, X. (2022). Peptide-Based Vaccines for Tuberculosis. Frontiers in immunology, 13, 830497. https://doi.org/10.3389/fimmu.2022.830497
Hay, F.C., and Westwood, O.M.R. (2002). Practical Immunology. Fourth. Edition. Blackwell Science Ltd. UK.
Harti, S.H., Murharyati, A., Sulisetyawati, D., and Oktariani, M. (2018). The effectiveness of snail mucus (Achatina fulica) and chitosan toward limfosit proliferation in vitro. Asian Journal of Pharmaceutical and
Clinical Research, 11(15):85. doi:10.22159/ajpcr.2018.v11s3.30041
Jiang, Y., Liu, H., Wang, H., Dou, X., Zhao, X., Bai, Y., Wan, L., Li, G., Zhang, W., Chen, C., and Wan, K. (2013). Polymorphism of antigen MPT64 in Mycobacterium tuberculosis strains. Journal of clinical microbiology, 51(5), 1558–1562. https://doi.org/10.1128/JCM.02955-12
Jonez-Lopez, E. C., Namungga, O., Mumbowa, F., Ssebidandi, S., Mbabazi, O., Moine, S., Mboowa, G., Fox, M. P., Reilly, N., Ayakaka, I., Kim, S., Okwera, A., Joloo, M., and Fennely, K.P. (2013). Cough aerosols of Mycobacterium tuberculosis predict new infection. Am J Respir Crit Care Med, 187 (9): 1007-1015.
Kementerian Kesehatan Republik Indonesia., 2018. Profil Kesehatan Indonesia. Kemenkes RI, Jakarta.
Kim, J.S., Cho, E., Mun, S.J., Kim, S., Kim, S.Y., Kim, D. G., Son, W., Jeon, H.I., Kim, H.K., Jeong, Y.J., Jang, S., Kim, H. S., and Yang, C.S. (2021). Multi-Functional MPT Protein as a Therapeutic Agent against Mycobacterium tuberculosis. Biomedicines, 9(5), 545. https://doi.org/10.3390/biomedicines9050545
Kusuma, S., Parwati, I., Rostinawati, T., Yusuf, M., Fadhlillah, M., Ahyudanari, R.R., Rukayadi, Y., and Subroto, T. (2019). Optimization of culture conditions for Mpt64 synthetic gene expression in Escherichia coli BL21 (DE3) using surface response methodology. Heliyon, 5(11), e02741. https://doi.org/10.1016/j.heliyon.2019.e02741
Lehninger, A. L. (2004). Principles of Biochemistry. Amhrest: Elsevier Science.
Maglione, P.J., and Chan, J. (2009). How B cells shape the immune response against Mycobacterium tuberculosis. European Journal of Immunology. 39(3): 676-686. http://doi.org/10.1002/eji.200839148
Maclver, N.J., Jacobs, S.R.,Wieman, H.L.,Wofford, J.A.,Coloff, J.L., and
Rathmell, J.C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology,84. 949-957.
Martin, D. R., Sibuyi, N. R., Dube, P., Fadaka, A. O., Cloete, R., Onani, M., Madiehe, A. M., and Meyer, M. (2021). Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics (Basel, Switzerland), 11(8), 1352. https://doi.org/10.3390/diagnostics11081352
Murray, et al. (2009). Harper’s illustrated biochemistry. Twenty-Eighth Ed. New York: Mc Graw Hill Medical.
Nair, P.K., and Chourasia, E. (2017). Use of genexpert assay for diagnosis of tuberculosis from body fluid speciments, a 2 years study. J Microbiol Biotechnol. 1(1):105
Otu, A.A. (2013). Is the directly observed therapy short course (DOTS) an effective strategy for tuberculosis control in a developing country. Asian. Pac. J. trop Dis, 3(3):227-231.
Piubelli, L., Campa, M., Temporini, C., Binda, E., Mangione, F., Amicosante, M., and Pollegioni, L. (2013). Optimizing Escherichia coli as a protein expression platform to produce Mycobacterium tuberculosis immunogenic proteins. Microbial Cell Factories, 12:115.
Pope, V., Sacksteder, K. A., Hererra, J. C., Gilman, R. H., Vargas-Prada, S., Lopez Romero, S., Yafac, J., Sanchez Rios, E., and Moore, D. (2018). MPT64 patch test for the diagnosis of active pulmonary tuberculosis: a randomised controlled trial in Peru. The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 22(6), 622–627. https://doi.org/10.5588/ijtld.17.0716
Roitt, I.M., and Delves, P.J. (2001). Essential immunology, eds. 10. Oxford. Wiley-Blackwell Science.
Song, S., Zhang, Q., Yang, H., Guo, J., Xu, M., Yang, N., Yi, J., Wang, Z., & Chen, C. (2022). A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis. Journal of veterinary science, 23(3), e50. https://doi.org/10.4142/jvs.21270
Sulman, S., Shahid, S., Khalid, A., Ambreen, A., Khan, I.H., et al. (2021). Enhanced serodiagnostic potential of a fusion molecule consisting of Rv1793, Rv2628 and a truncated Rv2608 of Mycobacterium tuberculosis. PLOS ONE, 16(11):e0258389. https://doi.org/10.1371/journal.pone.0258389
World Health Organization. (2018). Global Tuberculosis Control: WHO Report. World Health Organization Press, Geneva, Switzerland.
Xiao, T., Jiang, Y., Li, G., Pang, H., Zhao, L., Zhao, X., and Wan, K. (2019). Polymorphism of MPT64 and PstS1 in Mycobacterium tuberculosis is not likely to affect relative immune reaction in human. Medicine, 98(49), e18073. https://doi.org/10.1097/MD.0000000000018073
Yuen, C.M., Weyenga, H.O., Kim, A.A. (2014). Comparison of trends in tuberculosis incidence among adults living with HIV and adults without HIV – Kenya 1998–2012. Plos One, 9: e99880.
Zare, H., Aryan, E., Alami, S., Yaghoubi, A., Teimourpour, R., & Meshkat, Z. (2018). Designing and Construction of a Cloning Vector Containing mpt64 Gene of Mycobacterium tuberculosis. Tanaffos, 17(3), 198–202.
DOI: https://doi.org/10.32807/jambs.v9i2.278
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Analis Medika Biosains (JAMBS)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.